博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
django开发-聚合函数的使用
阅读量:6433 次
发布时间:2019-06-23

本文共 4009 字,大约阅读时间需要 13 分钟。

在django开发中,获取一些统计数据时,需要用到model中的聚合函数;下面就聊一下django中跟统计、聚合有关的方法。

1.aggregate: 对QuerySet进行汇总后得到的数据

1)求所有订单的平均消费:

from django.db.models import Avg, Countavg_price = OrderModel.objects.all().aggregate(Avg('total_price'))

给结果指定别名:{'hehe': 12.00}

avg_price = OrderModel.objects.all().aggregate(hehe=Avg('total_price'))

2)求订单的最大消费,和平均消费

avg_max_price = OrderModel.objects.all().aggregate(Avg('total_price'), Max('total_price'))

3)统计某菜品在所有评价中的点赞数量,order时订单号

order_evaluation = OrderEvaluationModel.objects.filter(food=food_code).filter(is_good=1).aggregate(count=Count("order"))

4)统计菜品的月销量,此处使用到了extra,extra下面会讲到

day_now = time.localtime()   # 当前时间month_first = '%d-%02d-01' % (day_now.tm_year, day_now.tm_mon)  # 月初logger.debug("month_first:%s", month_first)month_sales = OrderDetailModel.objects.filter(food=food_code).extra(where=["time > %s"], params=[month_first]).aggregate(count=Count("order", distinct=True))

2.annotate: 给返回的记录添加一个额外的临时字段(不好理解,看下面的具体例子)

1)第一个annotate:

orders = OrderDetailModel.objects.annotate(Count("order"))

annotate这个函数不是太好理解,使用logger.debug(orders.query)打印出的sql语句如下:

SELECT `orders_detail`.`id`, `orders_detail`.`order_id`, `orders_detail`.`user`, `orders_detail`.`payman`, `orders_detail`.`food_id`, `orders_detail`.`name`, `orders_detail`.`type`, `orders_detail`.`price`, `orders_detail`.`machine`, `orders_detail`.`amount`, `orders_detail`.`time`, COUNT(`orders_detail`.`order_id`) AS `order__count` FROM `orders_detail` GROUP BY `orders_detail`.`id` ORDER BY NULL

从上面的sql语句可以看出上一个查询的意思是以orders_detail.id分组,统计orders_detail.order_id的数量, 其他字段不变,增加了COUNT(orders_detail.order_id) AS order__count这一列。

2)再看一个annotate:

orders = OrderDetailModel.objects.values("food").annotate(Count("order"))

打印的sql语句如下:

SELECT `orders_detail`.`food_id`, COUNT(`orders_detail`.`order_id`) AS `order__count` FROM `orders_detail` GROUP BY `orders_detail`.`food_id` ORDER BY NULL

看着sql语句我们就很好理解了,就是以values中指定的字段分组,统计order_id的数量。再结合上一个例子看,如果没有使用values()函数,则便是按照所有字段分组,统计Count()中指定字段的数量。

3)统计每个用户的平均消费:

orders = OrderModel.objects.values("user").annotate(Avg("total_price"))

sql语句如下:

SELECT `orders_info`.`user_id`, AVG(`orders_info`.`total_price`) AS `total_price__avg` FROM `orders_info` GROUP BY `orders_info`.`user_id` ORDER BY NULL

4)统计每个用户的平均消费,并排序

orders = OrderModel.objects.values("user").annotate(avg_price=Avg("total_price")).order_by("avg_price")

sql语句如下:

SELECT `orders_info`.`user_id`, AVG(`orders_info`.`total_price`) AS `avg_price` FROM `orders_info` GROUP BY `orders_info`.`user_id` ORDER BY `avg_price` ASC

avg_price就是给统计字段起的别名

5)annotate后面还可以加filter等过滤函数,如下:

orders = OrderModel.objects.values("user").annotate(avg_price=Avg("total_price")).filter(avg_price__gt=100).order_by("avg_price")

sql语句如下:

SELECT `orders_info`.`user_id`, AVG(`orders_info`.`total_price`) AS `avg_price` FROM `orders_info` GROUP BY `orders_info`.`user_id` HAVING AVG(`orders_info`.`total_price`) > 100.0 ORDER BY `avg_price` ASC

加在annotate后面的filter函数实际上是HAVING子句,即分组后需要执行的条件。

当然,annotate中还可以执行Max()等其它聚合函数。

3.extra: 主要作用是可以用来写原生的sql语句,当遇到复杂的查询时,可以使用这个方法

下面看几个例子:
1)查询订单金额小于100元的订单信息:

OrderModel.objects.all().extra(where=["total_price < 100"])

sql语句如下:

SELECT `orders_info`.`order_id`, `orders_info`.`total_price`, `orders_info`.`method`, `orders_info`.`remark`, `orders_info`.`time` FROM `orders_info` WHERE (total_price < 100)

2)where查询

OrderModel.objects.all().extra(where=["status = '%s'"], params=['os001'])

sql如下:

SELECT `orders_info`.`order_id`, `orders_info`.`user_id`, `orders_info`.`status` FROM `orders_info` WHERE (status = 'os001')

where参数中可以先用%s占位,后面再用params参数去填充。

3)关联查询

OrderModel.objects.all().extra(tables=["order_progress"], where=["orders_info.status = order_progress.order_status"])

sql如下:

SELECT `orders_info`.`order_id`, `orders_info`.`user_id`, `orders_info`.`status`, `orders_info`.`total_price`, `orders_info`.`remark`, `orders_info`.`time`  FROM `orders_info` , `order_progress` WHERE (orders_info.status = order_progress.order_status)

这种就是数据库中的inner join关联查询。

以上就是django中一些统计函数的用法,如有错误,欢迎交流指正!

转载地址:http://frxga.baihongyu.com/

你可能感兴趣的文章
zabbix实现自动发现功能添加磁盘监控
查看>>
mysql8.0.14 安装
查看>>
1039. 到底买不买(20)
查看>>
android笔试题一
查看>>
【JavaEE企业应用实战学习记录】getConnListener
查看>>
了解轮询、长轮询、长连接、websocket
查看>>
bzoj2427[HAOI2010]软件安装
查看>>
bzoj1593[Usaco2008 Feb]Hotel 旅馆*
查看>>
WPF个人助手更新
查看>>
NLPIR技术助力中文智能数据挖掘
查看>>
python操作redis--------------数据库增删改查
查看>>
Android中仿IOS提示框的实现
查看>>
php初学第一课
查看>>
Windows下与Linux下编写socket程序的区别 《转载》
查看>>
java学习笔记 --- IO(3)
查看>>
Mysql 的FIND_IN_SET函数慢的忧化
查看>>
Web service是什么?
查看>>
python 问题集合
查看>>
豌豆荚工程师谈其新版应用搜索技术
查看>>
螺旋阵(递归和非递归)
查看>>